RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Межкафедральный семинар МФТИ по дискретной математике
16 ноября 2016 г. 18:30, г. Долгопрудный, Актовый зал Лабораторного корпуса МФТИ
 


Простые числа в арифметических прогрессиях

А. В. Савватеев

Количество просмотров:
Эта страница:245

Аннотация: Более 100 лет назад Дирихле доказал следующую теорему: «В любой арифметической прогрессии со взаимно-простыми начальным членом и разностью содержится бесконечное количество простых чисел.» Мы докажем кустарными методами бесконечность числа простых вида (4k+1) и (4k+3), а затем на этом примере познакомимся с методом Дирихле. Слушатели узнают, что такое ряд Дирихле, гипотеза Римана, бесконечное произведение и характер Дирихле. Будет дан набросок доказательства общей теоремы, а также краткое введение в комплексный анализ.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020