RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
11 октября 2016 г. 18:35, г. Москва, ГЗ МГУ, ауд. 14-03
 


Biquandle Brackets

Sam Nelson

Claremont McKenna College

Количество просмотров:
Эта страница:31

Аннотация: Abstract: Given a finite biquandle X and a commutative ring with identity R, we define an algebraic structure known as a biquandle bracket. Biquandle brackets can be used to define a family of knot and link invariants known as quantum enhancements which include biquandle cocycle invariants and skein polynomials such as the Alexander, Jones and HOMFLYpt polynomials as special cases. As an application we will see a new skein invariant which is not determined by the knot group, the knot quandle or the HOMFLYpt polynomial.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021