RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по многомерному комплексному анализу (Семинар Витушкина)
19 октября 2016 г. 16:45, г. Москва, ГЗ МГУ, ауд. 13-04
 


Многомерный символ Конту-Каррера

Д. В. Осипов

Количество просмотров:
Эта страница:67

Аннотация: Утверждение, что сумма вычетов мероморфной дифференциальной формы на компактной римановой поверхности есть ноль, верно не только для проективных алгебраических кривых над любым полем, но также имеет и мультипликативный аналог: закон взаимности Вейля для ручных символов на проективной кривой. Символ Конту-Каррера — это локальное отображение, из которого можно получить и вычет, и ручной символ, и множество других локальных отображений, для которых верны законы взаимности. С другой стороны, существуют многомерные законы взаимности Паршина–Ломадзе для многомерных вычетов мероморфных дифференциальных форм соответствующей степени на многомерном алгебраическом многообразии. Я расскажу про $n$-мерный символ Конту-Каррера, который обобщает обычный (одномерный) символ Конту-Каррера, и из которого выводятся $n$-мерные ручные символы и $n$-мерные вычеты. Соответствующие результаты были получены для $n=2$ докладчиком и Кс. Жу, а для произвольного $n$ — докладчиком и С. О. Горчинским в серии недавних работ.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017