Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Семинар по многомерному комплексному анализу (Семинар Витушкина)
2 ноября 2016 г. 16:45, г. Москва, МИАН, к. 303
 


Коммутирующие дифференциальные операторы в частных производных и их алгебро-геометрические спектральные данные

А. Б. Жеглов

Количество просмотров:
Эта страница:1460

Аннотация: В докладе речь пойдет о задачах классификации и явного построения коммутирующих дифференциальных операторов. Обе задачи известны давно, начиная с работ Валленберга, Шура, Бурхнала и Чаунди. Для обыкновенных дифференциальных операторов задача классификации решена благодаря работам Кричевера, в которых центральную роль играет функция Бейкера–Ахиезера — функция, для которой в ряде случаев есть точная формула через тета-функции якобиана спектральной кривой, и у которой есть алгебро-геометрическая интерпретация. В случае операторов в частных производных ситуация намного сложнее. Я планирую рассказать об алгебро-геометрической теории спектральных данных колец коммутирующих дифференциальных операторов и об актуальных проблемах комплексной геометрии, которые там возникают.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021