RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Большой семинар кафедры теории вероятностей МГУ
14 декабря 2016 г. 16:45, г. Москва, ГЗ МГУ, ауд. 12-24
 


О законе больших чисел для композиций случайных операторов и полугрупп

В. Ж. Сакбаевab

a Московский физико-технический институт
b Университет дружбы народов им. П. Лумумбы

Количество просмотров:
Эта страница:92

Аннотация: Будут исследованы такие объекты как случайные операторы, случайные полугруппы и их итерации. Для последовательности композиций $n$ независимых одинаково распределенных случайных полугрупп операторов изучается асимптотика отклонения композиции от ее математического ожидания при $n\to \infty$.
Для последовательностей $S_n={1\over n}\sum\limits_{k=1}^n\eta _k,  n\in N$, сумм независимых числовых случайных величин $\eta _n,  n\in \bf N$, закон больших чисел утверждает, что $P(\{ |S_n-MS_n |>\epsilon \})\to 0$ при $n\to \infty$ для любого числа $\epsilon >0$, где $MS_n $ – математическое ожидание случайной величины $S_n $ и $P(\{ |S_n-MS_n |>\epsilon \})$ – вероятность отклонения случайной величины $S_n$ от ее математического ожидания более чем на $\epsilon$. Для последовательности $\{U_n\}$ независимых случайных величин со значениями в множестве однопараметрических полугрупп линейных операторов в гильбертовом пространстве $H$ ставится вопрос об асимптотическом поведении последовательности усредненных композиций $U(n)={U}_n^{1\over n}\circ ...\circ U_1^{1\over n},  n\in N$.
Будем говорить, что для последовательности $\{ { U}(n)\} $ усредненных композиций случайных полугрупп со значениями в банаховом (локально выпуклом) пространстве операторнозначных функций $X$ выполняется закон больших чисел, если вероятность того, что отклонения композиции ${ U}(n)$ от ее математического ожидания по норме пространства $X$ (по какой-либо полунорме из семейства порождающих топологию полунорм) превосходит некоторое положительное число $\epsilon >0$, стремится к нулю при $n\to \infty$.
Установлены условия на случайные полугруппы операторов, достаточные для выполнения закона больших чисел; приведены примеры случайных полугрупп операторов, для которых закон больших чисел не выполнен.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017