RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Алгебраическая топология и её приложения. Семинар им. М. М. Постникова
15 ноября 2016 г. 16:45, г. Москва, ГЗ МГУ, ауд. 16-08, вторник, 16:45–18:20
 


Почему не бывает симплектических торических многообразий над додекаэдром?

А. А. Айзенберг

Национальный исследовательский университет "Высшая школа экономики", г. Москва

Количество просмотров:
Эта страница:38

Аннотация: Простой $n$-мерный многогранник называется многогранником Дельзана, если нормали к его гиперграням имеют целые координаты, и для любой вершины $v$ нормали к гиперграням, содержащим $v$, образуют базис решетки. В докладе я хочу разобрать теорему Клер Делоне: у трехмерного многогранника Дельзана $P$ есть треугольная или четырехугольная грань.
Многогранники Дельзана важны, поскольку они кодируют все возможные симплектические торические многообразия. Доказательство теоремы основано на исследовании когомологий торического многообразия $M_P$, соответствующего многограннику $P$. Важную роль играет наличие в $H^4(M_P)$ определенной выпуклой структуры: эффективного конуса. Эта структура является важной мелочью, присущей симплектическим торическим многообразиям в отличие от произвольных квазиторических.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017