RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по многомерному комплексному анализу (Семинар Витушкина)
23 ноября 2016 г. 16:45, г. Москва, ГЗ МГУ, ауд. 13-04
 


Модули матричных дивизоров на римановых поверхностях

О. К. Шейнман

Количество просмотров:
Эта страница:33

Аннотация: Матричные дивизоры введены А. Вейлем в 1938 г. и считаются хронологически первым подходом к теории голоморфных векторных расслоений на римановых поверхностях, где они играют ту же роль, что и обычные дивизоры в теории линейных расслоений. В дальнейшем идею матричных дивизоров поддержал А. Н. Тюрин в работах 1964–66 гг. по классификации голоморфных векторных расслоений на кривой произвольного рода. Его классификация состоит из двух частей: локальная теория матричных дивизоров и редукция к ней классификации векторных расслоений. На эти работы Тюрина не ссылались из-за большого количества недоказанностей и формальных ошибок в них. В дальнейшем теория повернула в сторону методов униформизации (Нарасимхан–Сешадри) и расслоений с дополнительными структурами (Сешадри — параболические структуры, Хитчин — расслоения Хиггса). В 1978 г. интерес к работам Тюрина возродили Кричевер и Новиков в связи с интегрированием уравнений КП и нелинейного Шредингера; они ввели термин "параметры Тюрина оснащенных расслоений".
Мое обращение к этой классической теме вызвано связью матричных дивизоров с недавно возникшими алгебрами операторов Лакса, а также тем, что, как я убедился, матричные дивизоры являются красивым и эффективным способом описания голоморфных расслоений.
Я объясню соответствие между матричными дивизорами и расслоениями и в дальнейшем буду рассказывать о локальной теории матричных дивизоров, не касаясь второй части — классификации расслоений. Мои основные цели: 1) ввести матричные дивизоры со значениями в полупростых и редуктивных группах; 2) дать параметризацию модулей локально эквивалентных дивизоров, которая гипотетически является и параметризацией стабильных G-расслоений, и 3) установить связь с алгебрами операторов Лакса.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017