RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар им. В. А. Исковских
9 февраля 2017 г. 18:00, г. Москва, МИАН, комн. 540 (ул. Губкина, 8)
 


Изолированные факторособенности в характеристике $p$

Д. А. Степанов

Московский государственный технический университет имени Н. Э. Баумана

Количество просмотров:
Эта страница:69

Аннотация: Известная теорема Шевалле-Шапарда-Тодда утверждает, что фактормногообразие $V/G$ векторного пространства $V$ по конечной линейной группе $G$ неособо тогда и только тогда, когда группа $G$ порождена псевдоотражениями. Вначале эта теорема была доказана в характеристике $0$, а затем обобщена на случай групп $G$, порядок которых не делится на характеристику поля. В модулярном случае (характеристика делит порядок группы) часть “только тогда” теоремы перестаёт быть верной. Кемпер и Малле доказали теорему, усиливающую теорему Шевалле–Шепарда–Тодда для неприводимых модулярных групп, порождённых псевдоотражениями. В докладе будет рассказано о результатах Кемпера и Малле, их связи с задачей классификации изолированных факторособенностей в характеристике p, а также о результатах Степанова и Щиголева, обобщающих теорему Кемпера и Малле для приводимых групп в случае размерности $3$. Как следствие, получается, что классификация модулярных изолированных факторособенностей в размерности не выше $3$ по существу не отличается от классификации немодулярных изолированных факторособенностей.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020