RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по многомерному комплексному анализу (Семинар Витушкина)
15 марта 2017 г. 16:45, г. Москва, ГЗ МГУ, ауд. 13-04
 


О полиномиально интегрируемых плоских бильярдах

А. А. Глуцюк

Количество просмотров:
Эта страница:55

Аннотация: Алгебраическая версия знаменитой гипотезы Бирхгофа (частично исследованная С.В.Болотиным, А.Е.Мироновым, М.Бялым) утверждает, что если бильярд в выпуклой области на плоскости имеет нетривиальный первый интеграл, полиномиально зависящий от вектора скорости (и не выражающийся через модуль скорости), то граница бильярдной области является эллипсом. С.Л.Табачников высказал и частично исследовал аналогичную гипотезу о внешних бильярдах. А именно, рассмотрим выпуклую кривую и отображение ее внешности в себя, заданное следующим образом: проведем из точки $А$ прямую, касающуюся кривой, и переведем точку $А$ в центрально-симметричную ей относительно точки касания. Гипотеза Табачникова состояла в том, что если описанное преобразование имеет полиномиальный первый интеграл, то рассматриваемая кривая является эллипсом. Мы представим ее решение (совместный результат с Е.И.Шустиным) и текущие результаты о гипотезе Бирхгофа для классических бильярдов. Их доказательства используют идеи и методы комплексной теории особенностей и алгебраической геометрии.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017