Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Семинар по теории функций действительного переменного
24 марта 2017 г. 18:30–20:00, г. Москва, ГЗ МГУ, аудитория 15-03
 


Многомерные функции Хаара и регулярные замощения пространства

В. Ю. Протасов

Количество просмотров:
Эта страница:153

Аннотация: Система функций Хаара на прямой является простейшим примером всплесков с двоичным коэффициентом растяжения, порожденных масштабирующей функцией – характеристической функцией отрезка [0,1]. Обобщением этой конструкции на функции нескольких переменных являются системы Хаара с произвольной целой матрицей растяжения. В этом случае, однако, конструкция становится значительно сложнее. Так, вместо отрезка [0,1] возникают специальные компакты ("тайлы"), целые сдвиги которых без перекрытий замощают пространство. Большинство тайлов имеют фрактальные свойства, они изучались во множестве работ (Лагариас, Грехениг, Вонг, Хейль, Кабрелли, Молтер, Хан, и др.) Проблема гладкости многомерных функций Хаара (показатели Гельдера в $L_2$ или показатели Соболева), которая в одномерном случае тривиальна, уже в $R^2$ вызывает серьезные трудности. До сих пор ответ был получен лишь для частных случаев матриц растяжения. Недавно мы в совместной работе с М.Шариной вывели явную формулу для показателей гладкости. Она оказалась тесно связанной с с топологическими характеристиками тайлов (хаусдорфова размерность границы, контент Минковского), а также, довольно неожиданно, с известной задачей дискретной математики о синхронизации автоматов (проблема Черны).

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021