RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар А. Бондала
5 октября 2006 г., г. Москва, МИАН, комн. 540 (ул. Губкина, 8)
 

Школа по множительным идеалам


Теорема Римана–Роха для когомологических операций

А. Л. Смирнов

Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук

Количество просмотров:
Эта страница:96

Аннотация: После построения В. Воеводским и Ф. Морелем мотивной стабильной гомотопической категории — алгебраического аналога соответствующей категории в топологии — естественно возник вопрос о нахождении мотивных вариантов основных теорем алгебраической топологии, в том числе и общей топологической теоремы Римана–Роха (Дайер). В этой теореме $K$-теория и когомологии из топологического варианта теоремы Римана–Роха–Гротендика заменены произвольными экстраординарными теориями, а характер Чженя произвольной мультипликативной операцией между ними. Если многообразие ориентировано относительно обеих теорий, то в обеих теория имеются прямые образы, а теорема Дайера описывает их взаимодействие с операцией. При этом ответ дан в терминах классов Тодда, определенных ориентациями стабильных нормальных расслоений многообразий.
Теорема Гротендика идет дальше теоремы Дайера в том смысле, что дает явную формулу для рода Тодда, определенную с помощью ряда $z/(1-\exp(-z))$. В докладе будет представлена аналогичная формула для мультипликативной операции между ориентированными теориями когомологий. Эта формула работает как в топологии, так и в мотивных теориях когомологий. Кроме того, будет проведена параллель между теоремой Римана–Роха и формулой замены переменной в интеграле, причем обратный класс Тодда интерпретируется как якобиан этой замены.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018