RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Динамические системы и дифференциальные уравнения
22 мая 2017 г. 18:30, г. Москва, ГЗ МГУ, ауд. 13-11
 


К теории нормальных форм уравнений смешанного типа на плоскости

А. А. Давыдов

Количество просмотров:
Эта страница:39

Аннотация: Хорошо известны уравнения Лапласа и волновое, приравнивающие к нулю локальные нормальные формы главного символа линейного уравнения второго порядка с частными производными на плоскости (с точностью до гладкой замены координат и умножения на гладкую функцию, не обращающуюся в ноль). Эти два уравнения доставляют соответственно эллиптический и гиперболический типы уравнения.
Типичное уравнение, вообще говоря, может менять тип, и вблизи точек, где такая смена наблюдается, иметь смешанный тип. Первые продвижения в задаче о нормальных формах такого уравнения были получены в первой трети прошлого века. Они были сделаны известными итальянскими математиками Ф.Трикоми (1923) и М.Чибрарио (1932). О последующих продвижениях в решении этой задачи и сегодняшнем состоянии дел и пойдёт речь в докладе.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018