RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по геометрической топологии
20 июля 2017 г. 15:00–17:00, г. Москва, МИАН, ауд. 534
 


$\Delta$-link homotopy of links in $S^3$ and invariants of link maps in $S^4$

S. A. Melikhov
Материалы:
Adobe PDF 108.9 Kb

Количество просмотров:
Эта страница:42
Материалы:11

Аннотация: In 2003, Nakanishi and Ohyama obtained a classification of $2$-component links up to $\Delta$-link homotopy. Namely, they are classified by the linking number and the generalized Sato-Levine invariant. Using Kirk's invariant of link maps $S^2\sqcup S^2\to S^4$ and its variation due to Koschorke, we obtain a simple proof of the Nakanishi–Ohyama theorem, and also its version for string links. We also prove that $3$-component links that are trivial up to link homotopy are classified up to weak $\Delta$-link homotopy by $\bar\mu$-invariants of length $\le 4$. The proof uses a computation of the image of Koschorke's $\tilde\beta$-invariant of link maps $S^2\sqcup S^2\sqcup S^2\to S^4$ (which is strictly stronger than Gui-Song Li's version of Kirk's invariant). This computation in is turn based on Yasuhara's results about $\Delta$-link homotopy. This talk is based on joint work with Yuka Kotorii.

Материалы: extended_abstract.pdf (108.9 Kb)

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019