RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по геометрической топологии
31 августа 2017 г. 17:00–19:50, г. Москва, Матфак ВШЭ (ул. Усачёва, 6), ауд. 108
 


On $\Delta$-link homotopy

Yuka Kotoriia, С. А. Мелиховb

a RIKEN – Institute for Physical and Chemical Research
b Математический институт им. В.А. Стеклова Российской академии наук, г. Москва

Количество просмотров:
Эта страница:35

Аннотация: M. Gusarov and K. Habiro proved that two knots are not distinguishable by Vassiliev invariants of order $<k$ if and only if they are related by a sequence of $C_k$-moves. The $C_1$-move is a crossing change, and the $C_2$-move can be achieved by taking a connected sum with a copy of the Borromean rings contained in a ball disjoint from the knot. The $C_2$-move can also be presented in a form visually very similar to the third Reidemeister move, and because of this it is also known as the $\Delta$-move.
Two links (or string links) are called self $C_k$-equivalent if they are related by a sequence of $C_k$-moves such that each of them involves strands only from one component. Not only Vassiliev invariants of order $<k$, but also invariants of order $<k$ in the sense of Kirk and Livingston (whose groups are, conjecturally, infinitely generated for $k=2$) are invariant under self $C_k$-equivalence. Self $C_1$-equivalence is better known as link homotopy, and self $C_2$-equivalence is also known as $\Delta$-link homotopy.
We will discuss two new steps in our project of classification of links and string links up to $\Delta$-link homotopy:
In part 1 of the talk, Yuka Kotorii will speak about a crossing change formula for $\mu$-invariants of string links with at most two occurrences of each index. These are precisely those $\mu$-invariants which are invariant under $\Delta$-link homotopy.
In part 2 of the talk, Sergey Melikhov will speak about classification of 3-component string links up to weak $\Delta$-link homotopy ($C_2^{xxx}$ and $C_3^{xx,yz}$ moves) by \mu-invariants of length at most 4 and the generalized Sato-Levine invariant of the closure of each two-component sublink. We also prove that $\bar\mu$-invariants of length at most 4 classify up to weak $\Delta$-link homotopy those 3-component links that are trivial up to link homotopy. As a byproduct of the proof, we compute the image of the Kirk-Koschorke invariant of link maps of three 2-spheres in $S^4$.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019