RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Коллоквиум Факультета компьютерных наук НИУ ВШЭ
11 сентября 2017 г. 18:10, г. Москва, Кочновский проезд, д. 3, ауд. 317
 


Learning on networks of distributions for discrete data

Wray Buntine

Monash University

Количество просмотров:
Эта страница:12

Аннотация: I will motivate the talk by reviewing some state of the art models for problems like matrix factorisation models for link prediction and tweet clustering. Then I will review the classes of distributions that can be strung together in networks to generate discrete data. This allows a rich class of models that, in its simplest form, covers things like Poisson matrix factorisation, Latent Dirichlet allocation, and Stochastic block models, but, more generally, covers complex hierarchical models on network and text data. The distributions covered include so-called non-parametric distributions such as the Gamma process. Accompanying these are a set of collapsing and augmentation techniques that are used to generate fast Gibbs samplers for many models in this class. To complete this picture, turning complex network models into fast Gibbs samplers, I will illustrate our recent methods of doing matrix factorisation with side information (e.g., GloVe word embeddings), done for link prediction, for instance, for citation networks.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017