RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика»
20 сентября 2017 г. 18:30, г. Москва, Мехмат МГУ, ауд. 16-22
 


Микроформальная геометрия и гомотопические алгебры

Ф. Ф. Воронов

University of Manchester

Количество просмотров:
Эта страница:36

Аннотация: Под "микроформальной геометрией" мы понимаем расширение категории гладких (супер)многообразий, при котором обычные гладкие отображения заменяются на "микроформальные морфизмы" (или "толстые морфизмы"). Микроформальные морфизмы (супер)многообразий были обнаружены в связи с гомотопическими пуассоновыми структурами (именно, для решения задачи о сравнении высших скобок Козюля на дифференциальных формах с канонической скобкой Схоутена). Микроформальный или толстый морфизм есть формальное каноническое отношение между кокасательными расслоениями. Он кодируется производящей функцией — формальным степенным рядом по импульсным переменным на целевом многообразии. Случай линейной функции отвечает обычному гладкому отображению. Имеют смысл композиция толстых морфизмов и обратный образ гладкой функции относительно толстого морфизма, которые определяются итерационной процедурой. Основное отличие от обычной ситуации — что обратный образ гладких функций есть нелинейное отображение. Это формальный нелинейный дифференциальный оператор, который с алгебраической точки зрения может быть описан как "нелинейный гомоморфизм" алгебр. Композиция толстых морфизмов задает формальную категорию (понятие, аналогичное формальной группе).
Микроформальные морфизмы имеют приложение к гомотопическим скобкам Пуассона, алгеброидам Ли и векторным расслоениям. Имеется также квантовый аналог, в котором роль "квантовых толстых морфизмов" играют интегральные операторы Фурье специального вида. (Подобные операторы рассматривались в квантовой механике Фоком в 1959 г. и в теории уравнений с частными производными Вишиком, Эскиным, Егоровым и Федорюком в 1960-х гг.) Они имеют приложение к "квантовым" гомотопическим алгебрам (алгебрам Баталина–Вилковысского). При этом возникает любопытная аналогия с теоремой Егорова. Также, совсем недавно обнаружено, что толстые морфизмы поднимаются на касательные расслоения. Это дает нелинейный обратный образ на дифференциальных формах и гипотетически на когомологиях.
Ссылки: J. Geom. Phys. 111, 94–110, 2017 (arXiv:1409.6475v3 [math.DG] ); arXiv:1411.6720v4 [math.DG].

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017