RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Межкафедральный семинар МФТИ по дискретной математике
4 октября 2017 г. 18:30, г. Долгопрудный, МФТИ, Корпус Прикладной Математики, 115
 


Задачи для исследования о графах на плоскости: устойчивость самопересечений и топологическая гипотеза Тверберга

А. Б. Скопенков

Количество просмотров:
Эта страница:48

Аннотация: A map φ:K→R2 of a graph K is approximable by embeddings, if for each ε>0 there is an ε-close to φ embedding f:K→R2. Analogous notions were studied in computer science under the names of cluster planarity and weak simplicity. In this survey we present criteria for approximability by embeddings (P. Minc, 1997, M. Skopenkov, 2003) and their algorithmic corollaries. We introduce the van Kampen (or Hanani-Tutte) obstruction for approximability by embeddings and discuss its completeness. We discuss analogous problems of moving graphs in the plane apart (cf. S. Spiez and H. Torunczyk, 1991) and finding closest embeddings (H. Edelsbrunner). We present higher dimensional van Kampen obstruction, its completeness result and algorithmic corollary (D. Repovs and A. Skopenkov, 1998).
In the second part of this talk I will describe the ‘van Kampen obstruction’ approach to the topological Tverberg probem for the plane.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018