RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Дифференциальные операторы на сингулярных пространствах, алгебраически интегрируемые системы и квантование
13 октября 2017 г. 20:15, г. Москва, Главное здание МГУ им. М. В. Ломоносова, аудитория 13-24
 


Автоморфизмы алгебры Вейля, гипотеза якобиана и задачи о подъеме

А. Я. Канель-Белов

Количество просмотров:
Эта страница:87

Аннотация: $W_n$ означает алгебру Вейля дифференциальных операторов от $n$ переменных. Рассматривая ее редукцию простому модулю $p$ получаем алгебру, конечномерную над своим центром. На центре канонически возникают скобки Пуассона, а стало быть и симплектическая структура. Если $p$ бесконечно большое простое, то эндоморфизм алгебры Вейля индуцирует симплектоморфизм, чей якобиан равен единице. В предположении гипотезы якобиана он обратим.
Мы обсуждаем вопросы независимости возникающего гомоморфизма между полиномиальными симплектоморфизмами и эндоморфизмами алгебры Вейля, а также его свойства быть изоморфизмом в свете последних работ (т.е. возможность подъема).
Мы обсуждаем также $Ind$-схемы связанные с автоморфизмами (которые обычно оказываются нередуцированными ) и проблемы подъема, оказывающиеся связанными также с проблемами диких и ручных автоморфизмов.
Alexei Kanel-Belov, Andrey Elishev, Jie Tai Yu, Independence of the B-KK Isomorphism of Infinite Prime, 2015 , 13 pp., arXiv: 1512.06533.
A.Belov-Kanel, Jie-Tai Yu., “Stable tameness of automorphisms of F⟨x,y,z⟩fixing z.”, Selecta Mathematica, 18:4 (2012), 799–802.
A.Belov-Kanel, Jie-Tai Yu, “On the lifting of the Nagata automorphism”, Selecta Mathematica, 17:4 (2011), 935–945
Belov, A.; Kontsevich M.L., “Automorphisms of Weil algebras.”, Letters in Mathematical Physics, 74, A special volume dedicated to the memory of F.A.Berezin:3 (2005), 181–199 , arXiv: math/0512169.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019