RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
17 октября 2017 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Complexity of virtual multistrings

Давид Фройнд

Количество просмотров:
Эта страница:45

Аннотация: A virtual $n$-string $\alpha$ is a collection of $n$ closed curves on an oriented surface $M$. Associated to $\alpha$, there are two natural measures of complexity: the genus of $M$ and the number of intersection points. By considering virtual $n$-strings up to equivalence by virtual homotopy, i.e., homotopies of the component curves and stabilizations/destabilizations of the surface, a natural question is whether these quantities can be minimized simultaneously. We show that this is possible for non-parallel virtual $n$-strings and that, moreover, such a representative can be obtained by monotonically decreasing genus and the number of intersections from any initial representative.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021