RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по геометрической топологии
26 октября 2017 г. 14:00–16:00, г. Москва, Матфак ВШЭ (ул. Усачёва, 6), ауд. 209
 


Projected embeddings

С. А. Мелихов

Количество просмотров:
Эта страница:71

Аннотация: An obvious necessary condition for a map $f: N\to M$ to lift to an embedding $N\to M\times\mathbb R^k$ is the existence of a $\mathbb Z_2$-equivariant map $\Delta_f\to S^{k-1}$, where $\Delta_f$ is the set of pairs $(x,y)\in N\times N$ such that $f(x)=f(y)$ and $x\ne y$. This condition is obviously not sufficient for the degree 3 covering $f: S^1\to S^1$ (with $k=1$), but M. Skopenkov proved that it is sufficient for maps $f$ of a trivalent graph into $\mathbb R^1$ (with $k=1$). Also, Haefliger proved in 1963 that it is sufficient in the case where $M$ is a point, $N$ is a smooth manifold and $2k\ge 3(\dim N+1)$.
We prove that the condition is sufficient when $f$ is a generic PL map or a generic smooth map, $n\le m$, $2(m+k)\ge 3(n+1)$ and $4n-3m\le k$, where $n=\dim N$, $m=\dim M$. In both cases the constructed lift will be only a piecewise-smooth embedding. When $f$ is a generic PL map, we can find a lift that is a PL embedding by some additional work. But if $f$ is a generic smooth map and we want the lift to be a smooth embedding, we must assume additionally that either $3n-2m\le k$ or $f$ has no singularities of type $\Sigma^{1,1}$.
One could try to prove these (or similar) results by some version of Haefliger's generalization of the Whitney trick. But, unfortunately, it does not work. We use a new kind of "Whitney trick", which in contrast to Haefliger's is described by an explicit formula.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019