RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
7 ноября 2017 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Порядок Брюа и обобщенные системы Тоды

Г. И. Шарыгин

Московский государственный университет имени М.В. Ломоносова

Количество просмотров:
Эта страница:22

Аннотация: Системой (открытой цепочкой) Тоды называют важную интегрируемую систему, фазовое пространство которой — пространство трехдиагональных симметрических матриц с нулевым следом. Эта система имеет много замечательных свойств и связана с большим количеством классических интегрируемых систем. Обобщенная система Тоды — это аналогичная система на пространстве всех бесследовых симметрических матриц, или на аналогичном подпространстве в некоторой вещественной алгебре Ли. В наших работах (совместно с Ю.Черняковым и А.Сориным) мы показали, что фазовый портрет системы Тоды на симметрических матрицах совпадает с диаграммой порядка Брюа на группе перестановок. В своем докладе я расскажу, на чем основано это утверждение, и о том, как можно попытаться обобщить его на произвольные группы Ли.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017