RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар отдела дифференциальных уравнений МИАН
10 ноября 2017 г. 13:00–14:30, г. Москва, МИАН, комн. 430 (ул. Губкина, 8)
 


Сходимость сферических средних для действий фуксовых групп

А. В. Клименко
Видеозаписи:
MP4 3,150.2 Mb
MP4 716.2 Mb

Количество просмотров:
Эта страница:68
Видеофайлы:21

А. В. Клименко


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Пусть $G$ — группа, $O$ — конечный симметричный набор образующих в ней. Тогда на группе задана норма — длина кратчайшего слова из образующих, представляющего данный элемент группы. Если $G$ действует сохраняющими меру преобразованиями на вероятностном пространстве $(X,\mu)$, для функций $f\in L^1(X,\mu)$ определены сферические средние $S_n(f)$, равные среднему арифметическому композиций $f$ со всеми преобразованиями, отвечающими элементам группы с нормой, равной $n$.
Известны два класса аналогов эргодической теоремы для действий групп, «похожих на свободную». Первый относится к сходимости усреднений по Чезаро последовательности сферических средних. Здесь получены (в работах Григорчука; Нево и Штейна; Буфетова; Буфетова, Клименко и Христофорова) результаты в весьма широкой общности — для всех так называемых марковских групп, причём элементам группы можно придавать различные веса, задаваемые марковской цепью.
Результаты о сходимости самих сферических средних значительно слабее, особенно в случае сходимости почти всюду. Ключевую роль в них играет наличие инволюции в пространстве состояний марковской цепи, задающей группу $G$, которая переводит марковскую цепь в ту же цепь с обращённым временем. В частности, Буфетовым была получена поточечная сходимость для действий свободной группы.
В докладе будет объяснён новый результат (совм. с. А.И. Буфетовым и К. Сириес), утверждающий поточечную сходимость сферических средних для действий широкого класса фуксовых групп, удовлетворяющих некоторому условию.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018