RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
28 ноября 2017 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Особенности слоения Лиувилля интегрируемых топологических биллиардов, ограниченных дугами софокусных квадрик

В. В. Ведюшкина

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:26

Аннотация: Пусть дан биллиард в плоской области, ограниченной дугами софокусных квадрик. Заметим, что если отражение абсолютно-упругое, то вдоль траекторий биллиарда сохраняется квадрат модуля вектора скорости. Рассмотрим произвольную биллиардную траекторию-ломаную. Оказывается, все её звенья лежат на касательных к некоторой квадрике (эллипсу или гиперболе), принадлежащей к тому же семейству софокусных квадрик, что и граница данного биллиарда. Это означает, что вдоль траекторий биллиарда сохраняется некоторая другая функция (параметр софокусной квадрики), независимая от первой, что влечет за собой интегрируемость такой динамической системы. Интересен вопрос о топологии слоения изоэнергетического многообразия полученной системы. Это можно сделать, например, вычислив инвариант Фоменко-Цишанга. Далее, можно поставить формулировку задачи следующим образом: пусть дано трехмерное изоэнергетическое многообразие с заданным на нём слоением Лиувилля. Можно ли сконструировать биллиард, изоэнергетическая поверхность которого обладает схожей топологией. В докладе будут представлены различные конструкции интегрируемых биллиардов (топологические биллиарды, биллиарды-книжки, некомпактные биллиарды), сконструированные на основе плоского биллиарда, ограниченного дугами софокусных квадрик, и показано, какими именно интересными особенностями обладают слоения Лиувилля их изоэнергетических поверхностей.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018