Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
26 декабря 2017 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


О гипотезе Табачникова о коммутирующих бильярдах и смежных вопросах

А. А. Глуцюк

Количество просмотров:
Эта страница:59

Аннотация: Гладкая граница выпуклой области в евклидовом пространстве задает преобразование отражения на пространстве ориентированных прямых. Гипотеза С.Л.Табачникова относится к двум вложенным выпуклым областям с гладкой границей в евклидовом пространстве. Известно, что если рассматриваемые области являются софокусными эллипсоидами, то соответствующие им преобразования отражения коммутируют. Гипотеза Табачникова утверждает, что верно и обратное: если преобразования отражения коммутируют, то рассматриваемые области суть софокусные эллипсоиды. Она доказана докладчиком в размерности два с помощью комплексных методов. Ее решение есть следствие более общего результата из комплексной геометрии, доказательство которого занимает две большие статьи. Было бы интересно получить более простое и чисто геометрическое доказательство.
Мы приведем доказательство того, что софокусные эллиптические бильярды коммутируют, обсудим связь коммутирующих бильярдов с гипотезой Бирхгофа а также смежные результаты и открытые вопросы.
Для понимания доклада предварительных знаний не требуется.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021