RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
26 декабря 2017 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


О гипотезе Табачникова о коммутирующих бильярдах и смежных вопросах

А. А. Глуцюк

Количество просмотров:
Эта страница:56

Аннотация: Гладкая граница выпуклой области в евклидовом пространстве задает преобразование отражения на пространстве ориентированных прямых. Гипотеза С.Л.Табачникова относится к двум вложенным выпуклым областям с гладкой границей в евклидовом пространстве. Известно, что если рассматриваемые области являются софокусными эллипсоидами, то соответствующие им преобразования отражения коммутируют. Гипотеза Табачникова утверждает, что верно и обратное: если преобразования отражения коммутируют, то рассматриваемые области суть софокусные эллипсоиды. Она доказана докладчиком в размерности два с помощью комплексных методов. Ее решение есть следствие более общего результата из комплексной геометрии, доказательство которого занимает две большие статьи. Было бы интересно получить более простое и чисто геометрическое доказательство.
Мы приведем доказательство того, что софокусные эллиптические бильярды коммутируют, обсудим связь коммутирующих бильярдов с гипотезой Бирхгофа а также смежные результаты и открытые вопросы.
Для понимания доклада предварительных знаний не требуется.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020