RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по геометрической топологии
15 февраля 2018 г. 14:00–16:50, г. Москва, Матфак ВШЭ (ул. Усачёва, 6), ауд. 215
 


Classifying link maps in the four-sphere

Э. Ч. Лайтфут

Количество просмотров:
Эта страница:34

Аннотация: This is the first in a series of talks in which we give a careful exposition of a recent ground-breaking paper of Rob Schneiderman and Peter Teichner (arXiv:1708.00358).
A link map is a map of a pair of 2-spheres into the 4-sphere such that the images of the 2-spheres are disjoint, and a link homotopy is a homotopy through link maps. That is, throughout the homotopy each component may self-intersect, but the two components must stay disjoint. Schneiderman and Teichner resolved a long-standing problem by proving that such link maps, modulo link homotopy, are classified by a certain invariant due to Paul Kirk. (This is a higher-dimensional analogue of the classical result in knot theory that the linking number classifies two-component links up to link homotopy.) The goal of these talks is to obtain a complete understanding of the proof of this result.
In this first, introductory talk, we assume no prior knowledge; our goal is to introduce the basic objects at play so as to understand the classification statement. In doing so we will introduce a number of techniques of four-dimensional topology. In particular, we present the basic tools used to study immersions of surfaces in four-manifolds, such as Whitney disks, finger moves, and algebraic intersection numbers.

Website: https://arxiv.org/abs/1708.00358
Цикл докладов

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018