RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Алгебраическая топология и её приложения. Семинар им. М. М. Постникова
13 марта 2018 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-08, вторник, 16:45–18:20
 


Теория (2n,k)-многообразий и приложения

В. М. Бухштаберab

a Московский государственный университет имени М.В. Ломоносова
b Математический институт им. В.А. Стеклова Российской академии наук, г. Москва

Количество просмотров:
Эта страница:45

Аннотация: Доклад основан на совместной работе с Svjetlana Terzic.
Рассматриваются компактные замкнутые ориентированные $2n$-мерные многообразия $M^{2n}$, на которых задано эффективное действие компактного $k$-мерного тора $T^k$ с конечным числом неподвижных точек. Естественно предполагается, что $k$ не превосходит $n$.
Мы введём и обсудим аксиоматику, которая позволяет описывать эквивариантную структуру действия тора $T^k$ и пространство орбит этого действия. Число $d=n-k$ называется сложностью действия. В случае $d=0$ наша теория приводит к известной теории квазиторических многообразий. Классические однородные пространства $G/H$ компактных групп Ли, где $H$ — подгруппа максимального ранга $k$ в группе $G$, дают важные примеры $(2n,k)$-многообразий с ненулевой сложностью.
В ряде широко известных работ исследовалась эквивариантная структура действия алгебраического тора $(\mathbb{C}^*)^k$ на комплексных многообразиях Грассмана $G(k,l)$. Получены глубокие результаты методами алгебраической геометрии и приложения в классических и современных задачах.
Наш подход опирается на опыт построения торической топологии на базе торической геометрии. Будут представлены результаты и приложения теории $(2n,k)$-многообразий, в том числе в задачах, которым посвящены работы И.М.Гельфанда-В.Сергановой, Макферсона-Горески, М.Капранова и других авторов.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018