RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Межкафедральный семинар МФТИ по дискретной математике
4 апреля 2018 г. 18:30, г. Долгопрудный, МФТИ, Лабораторный Корпус, Актовый Зал
 


Калейдоскопы и группы отражений

Н. В. Богачев

Количество просмотров:
Эта страница:149

Аннотация: Многие из нас знакомы с детской игрушкой – калейдоскопом, в котором разноцветные кусочки стекла, многократно отражаясь в трех зеркалах, создают красивый узор. Какими должны быть углы между зеркалами, чтобы отражения не накладывались друг на друга и создавали симметричный узор? Оказывается, что для этого углы должны быть целыми частями π. Описанный выше калейдоскоп двумерен, но, отбросив в сторону формальности, можно говорить и о многомерных калейдоскопах, и даже о неевклидовых, то есть на сфере и в пространствах Лобачевского. Все калейдоскопы на сфере и в евклидовых пространствах были найдены в 1934 году знаменитым британским математиком Г. Кокстером, и лишь спустя чуть более 30 лет Э.Б. Винбергу удалось построить эффективную теорию, позволяющую работать с калейдоскопами в пространствах Лобачевского. Я расскажу о том, как обстоят дела с поиском калейдоскопов в пространствах Лобачевского, и об открытых до сих проблемах 50-летней давности, связанных с ними.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020