RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар отдела алгебры и отдела алгебраической геометрии (семинар И. Р. Шафаревича)
10 апреля 2018 г. 15:00, г. Москва, МИАН, комн. 540 (ул. Губкина, 8)
 


Jordan property and almost fixed points

Ignasi Mundet i Riera

Количество просмотров:
Эта страница:60

Аннотация: I will talk about the relation between Jordan's property for (subgroups of) diffeomorphism groups and existence of points with big stabilizer.
A group $H$ is Jordan if there exists a constant $C$ such that any finite subgroup $G$ of $H$ has an abelian subgroup $A$ satisfying $[G:A]leq C$. Let $X$ be a smooth manifold and let $H$ be a subgroup of $Diff(X)$. The pair $(X,H)$ has the almost fixed point property if there is a constant $C$ such that for any finite subgroup $G$ of $H$ there exists a point $xin X$ whose stabilizer $G_x$ satisfies $[G:G_x]leq C$.
Theorem. If $X$ is a compact manifold, possibly with boundary, and the cohomology of $X$ is torsion free and concentrated in even degrees, then $(X,Diff(X))$ has the almost fixed point property.
I will explain how the theorem follows from the fact that $Diff(X)$ is Jordan. Using a result of Petrie and Randall, the theorem implies:
Corollary. Let $Z$ be a real affine manifold, not necessarily compact, and let $Aut(Z)$ denote the group of algebraic automorphisms of $Z$. If the cohomology of $Z$ is torsion free and concentrated in even degrees, then $(Z,Aut(Z))$ has the almost fixed point property.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018