RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по многомерному комплексному анализу (Семинар Витушкина)
18 апреля 2018 г. 16:45, г. Москва, ГЗ МГУ, ауд. 13-04
 


О выпуклости лемнискат многочленов с нулями в заданном круге

О. Н. Косухин

Количество просмотров:
Эта страница:44

Аннотация: Доклад посвящен решению возникшей в 1958 году в работе П. Эрдеша, Ф. Герцога, Дж. Пираняна задачи об отыскании минимального числа $a>0$, для которого всякий комплексный алгебраический полином $P(z)$, все нули которого лежат в круге $|z|\leq a$, имеет выпуклую лемнискату $ż: |P(z)|=1\}$. В докладе будет доказано, что такое $a$ является условным максимумом явно определяемой функции 8 переменных на явно заданном компакте в ${\mathbb R}^8$. Численные вычисления показывают, что $a=0,495668995...$ Также будет приведён первый пример полинома $P(z)$ с невыпуклой лемнискатой $ż: |P(z)|=1\}$, все нули которого лежат в круге радиуса $<0,5$.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018