RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по геометрической топологии
19 апреля 2018 г. 14:00, г. Москва, Матфак ВШЭ (ул. Усачёва, 6), ауд. 108
 


Hexagon relations, their cohomologies, and invariants of 4-dimensional PL manifolds

N. M. Sadykov

Количество просмотров:
Эта страница:103

Аннотация: Pachner moves, also called bistellar moves, are elementary re-buildings of a manifold triangulation. A triangulation of a given piecewise linear (PL) manifold can be transformed into any other one by a finite sequence of Pachner moves. Hexagon relations are algebraic realizations of four-dimensional Pachner moves. It can be said that hexagon relations are in the same relationship with 4-manifolds and Pachner moves as quandles are with knots and Reidemeister moves, or as the same quandles are with 2-knots and Roseman moves.
We present an explicit hexagon relation in terms of vector spaces over a finite field. This allows us to define “permitted colorings” on triangulations of 4-manifolds, with a clear correspondence between such colorings before and after a Pachner move. We then define a “rough” invariant of a 4-manifold, based on the total number of permitted triangulation colorings.
And like in the quandle case, there are cohomologies that can be introduced for hexagon relations. Remarkably, nontrivial cohomologies do exist, and they give much more interesting invariants of PL 4-manifolds.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018