RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Санкт-Петербургского математического общества
23 марта 2010 г., г. Санкт-Петербург
 

Совместное заседание С.-Петербургского математического общества и Секции математики Дома Ученых


Математическое доказательство: вчера, сегодня, завтра

Н. А. Вавилов

Количество просмотров:
Эта страница:723

Н. А. Вавилов
Фотогалерея

Аннотация: ЧТО ДОКАЗЫВАЕТ МАТЕМАТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО?
В последнее время все чаще обсуждается вопрос об изменении статуса доказательства и уменьшении нашей уверенности в справедливости результатов. Критика и скептицизм подобного рода наиболее энергично, часто и агрессивно озвучиваются в двух следующих направлениях.
– Сомнения в надежности доказательств, выполненных с помощью компьютера.
– Сомнения в надежности исключительно длинных и сложных доказательств.
Однако я склонен верить, что статус трудных современных результатов — и их доказательств! — мало отличается от статуса трудных математических результатов предшествующих веков. Я готов проиллюстрировать многочисленными историческими примерами, что фактические математические доказательства НИКОГДА — со времен греков — не удовлетворяли декларируемым стандартам. Классические работы, как и публикуемые сегодня, полны заблуждений, ошибок и пробелов разной степени серьезности. Что гораздо хуже, часто эти заблуждения и ошибки из поколения в поколение воспроизводятся в монографиях и учебниках, и их обнаружение в некоторых случаях потребовало многих десятилетий.
Следуя Конфуцию, я приглашаю к вскрытию ошибок, а не к их замазыванию. Нужно честно признать, что математика является человеческой деятельностью, целью и результатом которой является понимание, и мало отличается в смысле своей надежности от других видов человеческой деятельности. Достоверность математического доказательства и его убедительность относится к области психологии и социологии, а не логики.
В отличие от любых доказательств, математическое знание КАК ТАКОВОЕ обладает ЧРЕЗВЫЧАЙНО высокой степенью надежности. Эта надежность, как и надежность естественно-научного и технического знания, гарантируется отнюдь не доказательствами индивидуальных результатов, а общей когерентностью математической и естественно-научной картины мира, индивидуальным и коллективным пониманием и прямым контактом с миром идей, которое формируется в процессе работы у каждого квалифицированного и понимающего специалиста.
Вот, что знают о доказательстве практикующие математики, но боятся сказать:
– Математическое доказательство, РАССМАТРИВАЕМОЕ КАК ТЕКСТ, не доказывает ничего, кроме факта существования доказательств.
– Ни одно СЕРЬЕЗНОЕ математическое доказательство не может быть полностью формализовано, т.е. записано в соответствии со стандартами, пропагандируемыми математической логикой.
– Доказательство классификации простых конечных групп обладает ГОРАЗДО более высокой степенью достоверности, чем доказательства большинства общепризнанных классических результатов в области топологии, анализа или теории дифференциальных уравнений.
А что касается компьютерных вычислений, то лично я склонен доверять им больше, чем любым математическим доказательствам, КРОМЕ САМЫХ ПРОСТЫХ.
Видеозапись

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017