RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
5 октября 2010 г. 18:30, г. Москва, ГЗ МГУ, аудитория 16-10
 


Исчисление Шуберта и многогранники Гельфанда–Цетлина

В. А. Кириченко

Количество просмотров:
Эта страница:202

Аннотация: Исчисление Шуберта было разработано Шубертом в конце 19 века для решения задач исчислительной геометрии. Классический пример: сколько прямых в трехмерном пространстве пересекает 4 данные прямые? Ответ можно найти, пересекая циклы Шуберта на грассманиане $G(2,4)$ (многообразии плоскостей в $C^4$). В докладе будет рассказано о новом подходе к исчислению Шуберта на естественном обобщении грассманиана — многообразии полных флагов в $C^n$. При этом используется ключевая идея из торической геометрии (раздел алгебраической геометрии, созданный в 70-х годах прошлого века и изучающий торические многообразия): геометрию многообразия можно описать через комбинаторику выпуклого многогранника, связанного с многообразием.
Многообразие флагов не является торическим, но с ним тоже можно связать выпуклый многогранник — многогранник Гельфанда–Цетлина, построенный в середине прошлого века для нужд теории представлений. С каждым неприводимым представлением группы $GL_n(C)$ можно связать свой многогранник Гельфанда–Цетлина, так что целые точки внутри и на границе этого многогранника параметризуют естественный базис в пространстве представления. Оказывается, пересечение циклов Шуберта на многообразии полных флагов можно вычислять, просто пересекая грани многогранника Гельфанда–Цетлина. В докладе будет рассказано о недавних результатах докладчика в этом направлении, полученных совместно с Евгением Смирновым и Владленом Тимориным. В докладе будут даны необходимые определения, специальных знаний для понимания доклада не требуется.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017