RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
16 марта 2010 г., г. Москва, ГЗ МГУ, аудитория 16-10
 


Обратные задачи в стохастической геометрии (по совместной работе с A. Louis, M. Riplinger, M. Spiess)

Е. Сподарев

Количество просмотров:
Эта страница:37

Аннотация: В докладе обсуждается ряд проблем, стоящих на стыке теории вероятностей и геометрии. Рассматриваются аналитические и компьютерные методы обращения преобразований, используемых в томографии. В стохастической геометрии эти преобразования характеризуют анизотропность пространственного стационарного процесса, порожденного случайными отрезками (учитывается количество пересечений подобных процессов с множествами, расположенными в данном направлении и имеющими определенные размеры). Исследуются конечные меры на грассмановских многообразиях. Отдельное внимание уделяется задачам, связанным с выпуклой геометрией. Будет показано, как обращение обобщенного косинусоидального преобразования соотносится с обращением сферического преобразования Радона. Даются как интегральные формулы обращения упомянутых преобразований, так и формулы, использующие разложения функций по сферическим гармоникам. Кроме того, затрагиваются методы вычисления приближенных обратных преобразований для сферического преобразования Радона и косинусоидального преобразования.
Приводятся необходимые сведения из работ R. Gardner, W. Weil, P. Goodey, S. Helgason и др. Для понимания доклада не предполагается знакомство слушателей со специальной литературой.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017