RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
6 октября 2009 г., г. Москва, ГЗ МГУ, аудитория 16-10
 


Комбинаторный подход к проблеме реализации циклов

А. А. Гайфуллин

Количество просмотров:
Эта страница:114

Аннотация: Проблема реализации классов гомологий топологических пространств образами гладких многообразий восходит ещё к работам А. Пуанкаре, была чётко сформулирована Н. Стинродом в конце 1940-х годов и известна под названием проблемы реализации циклов. Классические результаты по этой задаче были получены Р. Томом в 1954 году. Опираясь на доказанную им теорему трансверсальности и вычисление когомологий универсальных пространств Тома, он получил следующие результаты:
1) всякий класс гомологий с коэффициентами в $\mathbb Z_2$ может быть реализован образом гладкого многообразия;
2) для любого $n$ существует натуральное число $k(n)$ такое, что всякий $n$-мерный целочисленный класс гомологий может быть реализован образом ориентированного гладкого многообразия с кратностью $k(n)$; при этом $k(n)=1$ (все классы реализуются при $n<7$;
3) построил пример семимерного нереализуемого целочисленного класса гомологий.
Позже важные результаты по проблеме реализации циклов, Включая оценки для чисел $k(n)$, были получены С. П. Новиковым, В. М. Бухштабером и другими математиками.
В докладе будет рассказано о новом подходе к проблеме реализации циклов, основанном на явном комбинаторном построении реализующего многообразия $N$ для класса $qz$ (для некоторого натурального $q$) по сингулярному циклу, представляющему заданный целочисленный класс гомологий $z$. При этом искомое многообразие $N$ склеивается из специальных простых многогранников, называемых пермутоэдрами. Такая комбинаторная конструкция сразу даёт следующий результат: для каждой размерности $n$ существует одно ориентированное гладкое многообразие $M^n$ такое, что всякий $n$-мерный целочисленный класс гомологий любого топологического пространства может быть реализован с некоторой кратностью образом конечнолистного накрытия над многообразием $M^n$. В качестве многообразия $M^n$ выступает многообразие изоспектральных симметрических трёхдиагональных вещественных $(n+1)\times (n+1)$-матриц. К сожалению, при таком комбинаторном подходе не удаётся получить никаких разумных оценок на кратность $q$.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017