Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Динамические системы и дифференциальные уравнения
4 сентября 2018 г. 18:30, г. Москва, г. Москва, ГЗ МГУ, ауд. 13-11
 


Ellipsoidal Billiards and Chebyshev-type polynomials

В. И. Драгович

Количество просмотров:
Эта страница:107

Аннотация: A comprehensive study of periodic trajectories of the billiards within ellipsoids in the d-dimensional Euclidean space is presented. The novelty of the approach is based on a relationship established between the periodic billiard trajectories and the extremal polynomials of the Chebyshev type on the systems of d intervals on the real line. As a byproduct, for d = 2 a new proof of the monotonicity of the rotation number is obtained and the result is generalized for any d. The case study of trajectories of small periods T, d ≤ T ≤ 2d is given. In particular, it is proven that all d-periodic trajectories are contained in a coordinate-hyperplane and that for a given ellipsoid, there is a unique set of caustics which generates d + 1-periodic trajectories. A complete catalog of billiard trajectories with small periods is provided for d = 3. This is a joint work with Milena Radnovic.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2022