RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
4 октября 2005 г., г. Москва, ГЗ МГУ, аудитория 16-10
 


Теория пересечений на пространствах модулей комплексных кривых

М. Э. Казарян

Количество просмотров:
Эта страница:112

М. Э. Казарян
Фотогалерея

Аннотация: Имеется большое количество задач в современной алгебраической геометрии и математической физике, решение которых сводится к изучению геометрии и топологии пространств модулей различных структур (многообразий, расслоений, отображений и т.п.). В своей гипотезе 1981 г. Виттен предсказал некоторые числа пересечений на (компактифицированном) пространстве модулей комплексных кривых с отмеченными точками. Несмотря на простоту формулировки, доказательство гипотезы потребовало применения довольно развитого математического аппарата. В настоящее время известно несколько доказательств гипотезы Виттена, и доклад посвящен обзору этих доказательств. Оставляя за рамками доклада вывод собственно утверждения гипотезы, я хочу обсудить геометрические методы, предоставляющие алгоритмы вычисления необходимых чисел пересечений:
- комбинаторная полиэдральная модель пространства модулей (Концевич);
- гиперболическая геометрия и вычисление объема Вейля–Петерсона пространства модулей (Мирзахани);
- ELSV формула и асимптотика чисел Гурвица разветвленных накрытий сферы (Окуньков–Пандарипанде и Ким-Лиу);
- прямое обращение ELSV формулы (Казарян–Ландо);
- топологическая рекурсия для пространств Гурвица (Шадрин).
Все приведенные подходы используют совершенно разный математический аппарат, между ними не видно никакой прямой связи, и хотя они направлены на вычисление одних и тех же чисел, совпадение ответов, полученных разными способами, поистине удивительно.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017