RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Геометрическая теория оптимального управления
19 сентября 2018 г. 18:30–20:00, г. Москва, МГУ им. М. В. Ломоносова, ГЗ, механико-математический факультет, ауд. 12-05
 


О геометрических решениях задачи Римана.

В. В. Палин

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:19

Аннотация: В докладе будет описан новый метод построения решений задачи Римана для скалярного закона сохранения и некоторых систем законов сохранения, позволяющий строить решения задачи Римана без априорных предположений о структуре (анзатце) решения. Метод будет проиллюстрирован на примере задачи Римана
$$ \{
\begin{array}{l} \phi_t=0,
u_t+(\frac12u^2+\phi)_x=0,
\phi|_{t=0}=-\theta(x),
u|_{t=0}=u_-+(u_+-u_-)\theta(x), \end{array}
. $$
где $\theta(x)$ – функция Хевисайда. Отметим, что предложенная модельная задача не является гиперболической по Фридрихсу, и потому ее решение не может быть построено при помощи стандартной техники.

Website: http://opu.math.msu.su/node/508

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018