RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
7 сентября 2004 г., г. Москва, ГЗ МГУ, аудитория 16-10
 


Пересечение высот треугольников в геометрии Лобачевского и тождество Якоби алгебры Ли квадратичных форм на симплектической плоскости

В. И. Арнольд

Количество просмотров:
Эта страница:430

Аннотация: Скобка Пуассона квадратичных форм является квадратичной формой. Это позволяет переформулировать теоремы алгебры бинарных форм в виде фактов геометрии Лобачевского и релятивистского мира де Ситтера. Из этой интерпретации вытекает, что три высоты треугольника плоскости Лобачевского пересекаются в одной точке, лежащей на плоскости Лобачевского, если все углы треугольника меньше 120 градусов. При бо́льшем угле точка пересечения может попасть в релятивистскую плоскость де Ситтера, реализуемую в модели Клейна листом Мёбиуса, дополняющим на проективной плоскости круг, реализующий плоскость Лобачевского.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017