RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Гамильтоновы системы и статистическая механика
12 ноября 2018 г., г. Москва, МГУ, механико-математический факультет, ауд. 1402
 


Проблема Зарембы и аддитивная комбинаторика

И. Д. Шкредов, Н. Г. Мощевитин, Б. Мерфи

Количество просмотров:
Эта страница:57

Аннотация: Проблема Зарембы из теории цепных дробей гласит, что для любого натурального q найдется целое число 0 < a < q, взаимно простое с q, такое, что для разложения в конечную цепную дробь рационального числа a/q = [x_1,....,x_s] выполнено x_j \le 5. До настоящего момента гипотеза остается открытой (исключая некоторые частные случаи), хотя в направлении этой гипотезы различные результаты были получены такими математиками, как Коробов, Нидеррайтер, Бурган, Конторович, Фроленков, Кан и др.
С помощью методов аддитивной комбинаторики (используются результаты о росте в группе SL_2 (\mathbf{F}_p)) мы получаем точную верхнюю оценку на число Зарембовских чисел a, то есть таких a, для которых гипотеза Зарембы справедлива. Кроме того, мы показываем, что из некоторого усиления наших верхних неравенств вытекает и требуемая оценка снизу.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018