RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по многомерному комплексному анализу (Семинар Витушкина)
14 ноября 2018 г. 16:45, г. Москва, ГЗ МГУ, ауд. 13-04
 


Квантовополевая амплитуда перехода в аксиоматическом подходе Боголюбова

В. П. Павлов

Количество просмотров:
Эта страница:32

Аннотация: Термин «амплитуда рассеяния» появляется в асимптотике решения уравнения Шредингера в квантовой задаче рассеяния. Он удобен для описания перехода из асимптотического начального in-состояния в асимптотическое конечное out-состояние в релятивистской квантовой теории поля.
Варианты аксиоматической квантовой теории поля развивались с конца 50-х годов прошлого века в связи с трудностями (не преодоленными до сих пор) построения последовательной динамической теории сильных взаимодействий. Основным объектом аксиоматического метода Боголюбова является S-матрица (матрица рассеяния), связывающая асимптотические состояния теории. Ее элементы выражаются через амплитуды переходов из начальных в конечные состояния.
В докладе сформулированы аксиомы метода Боголюбова на более строгом уровне, чем в обычной физической литературе. Особое внимание уделено формулировке условия причинности Боголюбова в форме вариаций по асимптотическим полям. Оказалось, что одновременное использование двух вариаций, по in- и out- полям, позволяет преодолеть комбинаторные трудности и применить теорему об острие клина для произвольного перехода m частиц → n частиц и доказать основную теорему: амплитуды любого перехода m частиц → n частиц с фиксированной суммой m+n являются граничными значениями единой аналитической функции.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018