Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Современные проблемы теории чисел
13 декабря 2018 г. 12:45, г. Москва, МИАН, комн. 530 (ул. Губкина, 8)
 


Гипотеза Эрдёша о расхождении

А. Б. Калмынин

Международная лаборатория зеркальной симметрии и автоморфных форм, НИУ ВШЭ, г. Москва

Количество просмотров:
Эта страница:96

Аннотация: Пусть $x_1,x_2,...$ — бесконечная последовательность, каждый член которой равен ±1. Гипотеза Эрдёша о расхождении, сформулированная в 1932 году, гласит, что множество сумм любой такой последовательности по конечным однородным арифметическим прогрессиям не ограничено по абсолютной величине. В своём докладе я начну рассказывать доказательство этой гипотезы, полученное Т. Тао в 2015 году. Оказывается, вместо произвольной последовательности достаточно рассматривать значения случайной вполне мультипликативной функции. Доказательство этого факта будет опираться на общие результаты из теории вероятности (в частности, на теорему Прохорова), а также будет использовать анализ Фурье на конечных абелевых группах.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2022