RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по геометрической топологии
17 декабря 2018 г. 15:30–17:30, г. Москва, Матфак ВШЭ (ул. Усачёва, 6), ауд. 212
 


Brunnian link maps in the 4-sphere and the Chinese Rings puzzle

С. А. Мелихов

Количество просмотров:
Эта страница:35

Аннотация: A link map (сингулярное зацепление) is a map $X_1\sqcup…\sqcup X_k \to Y$ such that the images of the $X_i$'s are pairwise disjoint. A link homotopy (зацепляющая гомотопия) is a homotopy whose every time instant is a link map. For example, link maps $S^p\sqcup S^q \to S^{p+q+1}$ are classified (up to link homotopy) by the linking number, and link maps $S^1\sqcup S^1\sqcup S^1 \to S^3$ are classified by Milnor's triple $\bar\mu$-invariant. In a 2017 preprint R. Schneiderman and P. Teichner proved a long-standing conjecture that link maps $S^2\sqcup S^2 \to S^4$ are classified by Kirk's invariant, which takes values in the infinitely generated abelian group $\mathbb Z[x]\oplus\mathbb Z[y]$.
In this talk I will compute the image of the Kirk–Koschorke invariant of link maps $S^2\sqcup S^2\sqcup S^2 \to S^4$, which takes values in $\mathbb Z[(\mathbb Z\oplus\mathbb Z)/-]^3$. The main step is a new elementary construction of Brunnian link maps $S^2\sqcup…\sqcup S^2 \to S^4$. (“Brunnian” means that all proper sublinks are trivial up to link homotopy.) This construction is closely related to the minimal solution of the Chinese Rings puzzle (головоломка “меледа”). I will also show that the Kirk–Koschorke invariant is incomplete, using a new non-abelian invariant of link maps $S^2\sqcup…\sqcup S^2\to S^4$ with values in $\mathbb Z[RF_{m-1}/t]^m$, where $RF_k$ is the Milnor free group ($RF_2$ is also known as the discrete Heisenberg group) and $t(g)=g^{-1}$.
As explained in https://arxiv.org/abs/1711.03514 , computation of the images of invariants of link maps in $S^4$ is actually motivated by the study of classical links. In particular, the computation of the image of the Kirk–Koschorke invariant has the following application, which will be discussed if time permits: Two links $S^1\sqcup S^1\sqcup S^1\to S^3$ that are link homotopic to the unlink are related by $C_2^{xxx}$-moves and $C_3^{xx,yz}$-moves if and only if they have equal $\bar\mu$-invariants (with possibly repeating indices) of length at most 4.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019