RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
1 апреля 2019 г. 18:30, г. Москва, ГЗ МГУ, ауд. 13-24
 


Foam evaluation and Khovanov–Rozansky link homologies (joint work with Emmanuel Wagner)

Louis-Hadrien Robert

Université de Genève

Количество просмотров:
Эта страница:33

Аннотация: Foams are surfaces with singularities and can be thought of as cobordisms between graphs. I will present a formula which associate with any foam a symmetric polynomial in $N$ variables. Then I will explain that this formula extends to a trivalent TQFT which categorifies the $\mathfrak{sl}_N$-MOY calculus. This can be used to define the equivariant $\mathfrak{sl}_N$ link homology.
Surprisingly, the same formula can be used categorify the $\mathfrak(N)$ link invariant associated with symmetric powers of the standard representation of $U_q(\mathfrak{sl}_N})$ (aka the colored Jones polynomial in the case $N=2$).

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021