Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Общеинститутский семинар «Коллоквиум МИАН»
4 апреля 2019 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Выпуклая тригонометрия

Л. В. Локуциевский
Видеозаписи:
MP4 2,249.4 Mb
MP4 1,021.3 Mb

Количество просмотров:
Эта страница:942
Видеофайлы:442
Youtube Video:

Л. В. Локуциевский
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке



Аннотация: На докладе я расскажу о новом удобном методе описания плоских выпуклых компактных множеств и их поляр, обобщающем классические тригонометрические функции $\cos$ и $\sin$. Свойства этой пары функций в случае единичного круга наследуются двумя парами функций $\cos_\Omega$, $\sin_\Omega$ и $\cos_{\Omega^\circ},\sin_{\Omega^\circ}$ – для самого множества $\Omega$ и его поляры $\Omega^\circ$. Этот метод оказался очень полезным для явного описания решений задач оптимального управления с двумерным управлением. С его помощью в 2018 г. удалось явно найти геодезические в серии субфинслеровых задач для случаев Гейзенберга, Грушина, Мартине, Энгеля и Картана. В 2019 совместно с Ю.Л. Сачковым и А.А. Ардентовым удалась явно решить еще более 10 классических задач. Например, на докладе я расскажу о финслеровых геодезических на плоскости Лобачевского.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021