Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Когомологические аспекты геометрии дифференциальных уравнений
17 апреля 2019 г. 19:20, г. Москва, Независимый Московский университет, Большой Власьевский пер., 11, ауд. 308
 


Дуальность Руйсенарса в многочастичных аналогах уравнений Пенлеве

И. Ю. Гаюр

Количество просмотров:
Эта страница:75

Аннотация: Доклад посвящён дуальности, возникающей в многочастичных аналогах уравнений Пенлеве введённых K.Takasaki. В недавней работе M.Bertola, M.Cafasso и В.Рубцов получили изомонодромное описание для данных систем с использованием процедуры Гамильтоновой редукции. В докладе я расскажу о данной редукции, в качестве простейшего примера будет рассмотрена самодуальная рациональная модель Калоджеро-Мозера. В продолжении будут введены основные понятия теории уравнений Пенлеве и изомонодромных деформаций, а также классического соответствия Калоджеро-Пенлеве для 2-частичных систем. Далее будет показано, как данное соответствие может быть расширено на случай многочастичных систем, используя процедуру гамильтоновой редукции для матричных аналогов уравнений Пенлеве, и какие дуальные системы возникают в ходе применения данной процедуры к матричным уравнениям Пенлеве. В конце я обсужу, как многочастичное соответствие Калоджеро-Пенлеве может быть связано с редукциями матричных интегрируемых уравнений в частных производных на примере матричного уравнения mKdV. Совместная работа с В.Рубцовым.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2022