RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
16 апреля 2019 г. 18:30, г. Москва, ГЗ МГУ, аудитория 16-10
 


Орбиты группы автоморфизмов алгебраического многообразия

И. В. Аржанцев

Количество просмотров:
Эта страница:99

И. В. Аржанцев
Фотогалерея

Аннотация: Пусть $X$ – неприводимое комплексное алгебраическое многообразие и $\mathrm{Aut}(X)$ – группа его автоморфизмов. Орбиты группы $\mathrm{Aut}(X)$ на $X$ определяют естественную стратификацию многообразия. В докладе будут описаны орбиты группы $\mathrm{Aut}(X)$ для полных (Бажов) и аффинных торических многообразий. Также мы поговорим о классификации однородных относительно группы $\mathrm{Aut}(X)$ торических многообразий. Эти результаты основаны на комбинаторной конструкции корней Демазюра и линейной двойственности Гейла.
Теория колец Кокса позволяют сводить вопросы об автоморфизмах алгебраических многообразий к вопросам об автоморфизмах градуированных факториальных алгебр. Мы проиллюстрируем эффективность этого подхода на конкретных примерах.
Изучение автоморфизмов аффинного пространства тесно связано с известными открытыми вопросами – проблемой якобиана, проблемами сокращения, выпрямления и линеаризации, характеризацией ручных и диких автоморфизмов. Мы сформулируем эти проблемы и кратко расскажем о последних достижениях в этой области. В случае аффинных многообразий мы подробно остановимся на важном эффекте - бесконечной транзитивности действия группы специальных автоморфизмов $\mathrm{SAut}(X)$ на открытой орбите. Недавно выяснилось, что бесконечная транзитивность имеет место уже для подгрупп группы автоморфизмов, порожденных конечным числом одномерных аддитивных подгрупп.
Доклад основан на результатах совместных работ с И.Бажовым, С.Гайфуллиным, М.Зайденбергом, К.Куюмжиян, Ю.Хаузеном и другими коллегами.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019