RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Алгебраическая топология и её приложения. Семинар им. М. М. Постникова
16 апреля 2019 г. 17:35–18:20, г. Москва, ГЗ МГУ, ауд. 16-08, вторник, 16:45–18:20
 


Трехмерные прямоугольные многогранники конечного объема в пространстве Лобачевского: конструкции и комбинаторика

Н. Ю. Ероховец

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:34

Аннотация: Доклад посвящен комбинаторным свойствам многогранников, реализуемых в пространстве Лобачевского $L^3$ в виде многогранников конечного объема с прямыми двугранными углами.
На основе теоремы Е.М.Андреева мы покажем, что срезка идеальных вершин прямоугольных многогранников устанавливает взаимно однозначное соответствие с сильно циклически рёберно 4-связными многогранниками, отличными от куба и 5-угольной призмы.
Мы доказываем, что любой такой многогранник получается срезкой паросочетания многогранника из этого класса или куба с не более чем двумя срезанными несмежными перпендикулярными рёбрами, производящей все 4-угольники. Мы опишем уточнение конструкции Барнетта таких многогранников и ее приложение к прямоугольным многогранникам.
Будет рассказано об уточнении конструкции идеальных прямоугольных многогранников при помощи операций скручивания ребер, приведенной в обзоре А.Ю.Веснина 2017 года, и описана связь этой конструкции с конструкцией Барнетта при помощи совершенных паросочетаний. Планируется также обсудить изменение объема многогранника при операциях. Доклад основан на публикации http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=4010&option_lang=rus (в печати).

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019