RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Проблемы математической теории управления
21 мая 2019 г. 11:00, Москва, МИАН, комн. 430 (ул. Губкина, 8)
 


Аналитическое решение аэродинамической задачи Ньютона без предположения об осевой симметрии

М. И. Зеликинa, Л. В. Локуциевскийb

a Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
b Математический институт им. В.А. Стеклова Российской академии наук, г. Москва

Количество просмотров:
Эта страница:41

Аннотация: Задача о форме выпуклого тела, имеющего минимальное сопротивление при движении в разреженной среде, была поставлена и решена Ньютоном для осесимметричных тел. На протяжении трех веков считалось, что найденное Ньютоном решение оптимально в классе всех выпуклых тел. Однако в конце ХХ в. выяснилось, что это не так: были найдены неосесимметричные выпуклые тела, имеющие меньшее сопротивление. Точная форма оптимального тела оставалась неизвестной вплоть до настоящего момента. На докладе будет представлена работа, в которой аналитически выведена форма тела в классе тел, обладающих вертикальной плоскостью симметрии, и доказана его локальная оптимальность. Полученное сопротивление хорошо согласуется, с проведенными ранее Lachand-Robertand, Oudet и Wachsmuth численными расчетами, что позволяет предположить его асимптотическую оптимальность среди всех выпуклых тел.

Website: https://arxiv.org/abs/1905.02028

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019