RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
20 мая 2019 г. 18:30, г. Москва, ГЗ МГУ, ауд. 13-24
 


The Hurwitz action of braid groups and the computational complexity of knot invariants

Eric Samperton

Количество просмотров:
Эта страница:34

Аннотация: Fix a finite group $G$, and a conjugacy invariant subset $C$ of $G$. The $n$-strand braid group $B_n$ acts on the Cartesian product $C^n$, which we can think of as the set of regular branched $G$-covers of the disk with branch types in C. What are the orbits of this action?
I’ll answer this question in the stable range where $n$ is "large enough," under the assumption that $C$ generates $G$. More generally, I will answer analogous questions for surfaces with both punctures and genus, without requiring that $C$ generate $G$. This provides a mutual generalization of theorems of Ellenberg-Venkatesh-Westerland and Dunfield-Thurston.
When $G$ is assumed to be a non-abelian simple group, we can say much more about the stable behavior of these actions. In particular, in joint work with Greg Kuperberg, we used this understanding to derive complexity-theoretic hardness results for $G$-coloring invariants of knots.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020