RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
20 мая 2019 г. 18:30, г. Москва, ГЗ МГУ, ауд. 13-24
 


The Hurwitz action of braid groups and the computational complexity of knot invariants

Eric Samperton

Количество просмотров:
Эта страница:36

Аннотация: Fix a finite group $G$, and a conjugacy invariant subset $C$ of $G$. The $n$-strand braid group $B_n$ acts on the Cartesian product $C^n$, which we can think of as the set of regular branched $G$-covers of the disk with branch types in C. What are the orbits of this action?
I’ll answer this question in the stable range where $n$ is "large enough," under the assumption that $C$ generates $G$. More generally, I will answer analogous questions for surfaces with both punctures and genus, without requiring that $C$ generate $G$. This provides a mutual generalization of theorems of Ellenberg-Venkatesh-Westerland and Dunfield-Thurston.
When $G$ is assumed to be a non-abelian simple group, we can say much more about the stable behavior of these actions. In particular, in joint work with Greg Kuperberg, we used this understanding to derive complexity-theoretic hardness results for $G$-coloring invariants of knots.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021