RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Алгебраическая топология и её приложения. Семинар им. М. М. Постникова
17 сентября 2019 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-08, вторник, 16:45–18:20
 


Сингулярные зацепления в $S^4$ и их применения к зацеплениям в $S^3$

С. А. Мелихов

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва

Количество просмотров:
Эта страница:47

Аннотация: Сингулярным зацеплением или зацепляющим отображением (link map) называется отображение $X_1\sqcup\ldots\sqcup X_m \to Y$, такое что образы разных $X_i$ попарно не пересекаются; а зацепляющей гомотопией (link homotopy) называется гомотопия в классе сингулярных зацеплений. Например, сингулярные зацепления $S^p\sqcup S^q \to S^{p+q}$ классифицируются (с точностью до зацепляющей гомотопии) коэффициентом зацепления, а сингулярные зацепления $S^1\sqcup S^1 \sqcup S^1 \to S^3$ классифицируются попарными коэффициентами зацепления и тройным $\bar{\mu}$-инвариантом Милнора.
Р.Фенн и Д.Ролфсен (1986) придумали нетривиальное сингулярное зацепление $S^2\sqcup S^2 \to S^4$, используя, что каждая компонента зацепления Уайтхеда нульгомотопна в дополнении другой. П.Кирк (1988) придумал инвариант сингулярных зацеплений $S^2\sqcup S^2 \to S^4$ со значениями в бесконечно порожденной свободной абелевой группе и нашел его образ. Проблема инъективности этого инварианта оказалась весьма нетривиальной. Так, журнал Topology (1997) опубликовал ее отрицательное решение, а журнал Annals of Mathematics (2019) публикует положительное (П.Тайхнер и Р.Шнайдерман, arXiv:1708.00358).
Естественное обобщение инварианта Кирка на сингулярные зацепления $m$ экземпляров $S^2$ в $S^4$ выписал У.Кошорке (1991). Теорема 1: инвариант Кирка-Кошорке не инъективен при $m>2$. Для доказательства вводится новый “неабелев” инвариант $m$-компонентных зацеплений в $S^4$, который, грубо говоря, отностится к “абелеву” инварианту Кирка-Кошорке так же, как $\bar{\mu}$-инварианты Милнора — к попарным коэффициентам зацепления.
Для сингулярных зацеплений $S^2\sqcup S^2\sqcup S^2 \to S^4$ также найден образ инварианта Кирка-Кошорке (теорема 2). Основной шаг — новая элементарная конструкция брунновых сингулярных зацеплений $S^2\sqcup \ldots \sqcup S^2 \to S^4$, тесно связанная с минимальным решением головоломки меледа (Chinese Rings puzzle).
Сингулярные зацепления в $S^4$ важны для понимания классических зацеплений. Около 12 лет назад я рассказывал на Постниковском семинаре, как вычисление образа инварианта Кирка сингулярных зацеплений $S^2\sqcup S^2 \to S^4$ позволяет передоказать классификацию Наканиши-Ойямы (2003) зацеплений $S^1\sqcup S^1 \to S^3$ относительно покомпонентных $C_2$-движений (arXiv:1711.03514, опубликовано в JKTR 2018). А теорема 2 имеет следующее применение (теорема 3): два зацепления $S^1\sqcup S^1\sqcup S^1 \to S^3$, зацепляюще гомотопные тривиальному, имеют равные $\bar{\mu}$-инварианты длины не более 4 (с повторами индексов), если и только если они связаны $C_2^{xxx}$-движениями (=покомпонентными $C_2$-движениями) и $C_3^{xx,yz}$-движениями (Гусарова-Хабиро).

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019